;2.1) Program: 1H-13C HETCOR ;Description: 1H-13C HETCOR with FSLG decoupling and LGCP transfer ;Requires: !!!; higher power for good 1H resolution; 6 – 12 kHz MAS ;Reference(s): HETCOR has been used and improved by various groups, after the pioneering work ;of Caravatti et al., Chem. Phys. Lett., 100, 305 (1983). Also compare HETCOR with fast MAS at ;high field (Spiess et al.) ;srlgfqhetcor.gamm.jos ; gamm integral to suppress sidebands in w2 dimension ;from srlgfqhetcor.toss.jos and .gamm, use with STATES in eda ;from srlgfqhetcor.sd ;from lghetfq.av in pp.asolids ;FSLG-HETCOR during t1 ;d1 : recycle delay ;p3 : 90 deg proton pulse ;p15 : H to x contact time ;pl1 : X power level ;pl2 : proton contact power level ;pl12 : dec. H power level ;l0 =0 ;l0 increment in t1 (multiple of FSLG)set by number of iu0 commands ;one iuo command means 2*p5=20 usec evolution increment ;prior adjustment on adamantane, j-coupled, is recommended ;do this on a cramps spinner with adamantane, fqlg.av pulse program ;set p5 =10 usec for a 3.1 usec proton 90 at this power level (294 degree pulse) ;however, pl22 is usually lower than measured for a 3.1 usec pulse ;pl22 power level for LG condition ;cnst21 : O2 on resonance, e.g. 1500 ;cnst20: B1 field during FSLG at pl22, in Hz, e.g. 61000 ;cnst22, cnst23 are FSLG offsets calculated from cnst20 and cnst24 ;cnst24: offset for proton evolution under LG, e.g. -1000 ;cnst25: LGCP offset (e.g. -41000) ;to avoid that the proton spectrum gets too close to the upper edge after xfb ;in0: 1/(1 * SW) = 2 * DW corrected by FSLG scaling factor ;nd0: 1 ;MC2: States ;transform with rev flag set for F1 ;..............the following is from #include .......... "cnst22=cnst20/sqrt(2)+cnst24" ;cnst20=B1 in Hz for pl22 (really: gamma B1 / 2 pi) ;Delta_B0 of negative offset (e.g.-41000) points up "cnst23=-cnst20/sqrt(2)+cnst24" ;negative offset is cnst23 "p5=l4*((295/360)/(cnst20))*1e6";360 pulse around Beff = 295=360*sin(54,7) degree pulse from cnst20 "p6=p5-d19" ;calculate correction for cpd=cwlgs "p30=p31-0.4u" ;calculate correction for cpd=tppm ;.......................................................................... #include ;see trigg out to oscilloscope "d25=(1s/l31)*0.1226-(p2/2)-2u-3u" "d26=(1s/l31)*0.0773-p2" ;too short for power level switch "d27=(1s/l31)*0.2236-p2-6u" "d28=(1s/l31)*1.0433-p2-6u" "d29=(1s/l31)*0.7744-(p2/2)-3u-d13" "p13=(p11*353)/900" ;35 pulse "p23=(p11*547)/900" ;55 pulse define delay t1incr "t1incr=4*p5*l3*0.578" "in0=4*p5*l3" define loopcounter td1half "td1half=td1/2" ;for STATES 1 ze ; zero data t1incr 2 d1 do:f2 ; recycle time, decoupler off d0 trigg ;out to oscilloscope 10u pl1:f1 ; set power level of f1 and f2 10u fq=cnst24:f2 ; set f2 near resonance (p11 pl22 ph1):f2 ;at pl22, 90 +-x onto +-y (perpendicular to xz-plane of FSLG fields) 3 (p5 ph13 fq=cnst22):f2 ;fslg loop at pl22, LG frequ. 1 in xz-plane (p5 ph14 fq=cnst23):f2 ;fslg loop at pl22, LG frequ. 2 (p5 ph13 fq=cnst22):f2 ;fslg loop at pl22, LG frequ. 1 in xz-plane (p5 ph14 fq=cnst23):f2 ;2 LG periods total lo to 3 times l0 1u fq=cnst24:f2 p23:f2 ph3 ;55y rotates Mxz to Mx p11:f2 ph4 ;90 -x(0) to z d6 ;dephase spin-locked (10u), spin diffusion p23:f2 ph5 ;55 rotates to LG spin lock (neg. offset) ;O2 off resonance by cos(54.74) = 0.577 w1(CP) ; or 0.71 w1(CPLG); power +1.76 dB from pl2 to pl3 (p15 pl1 ph2):f1 (p15 fq=cnst25 pl3 ph10):f2 ;LG cross polarisation, 1u fq=cnst21:f2 pl11:f1 ;on-resonance decoupling p1:f1 ph7 ;store for z-filter d16 do:f2 ;z-filter & gamma integral 1u cw:f2 pl12:f2 ;turn on F2 decoupling p1:f1 ph8 ;read out d25 ; 3u pl22:f2 p2:f1 ph23 ;180 13C #1 d26 ; p2:f1 ph24 ;180 13C #2 3u pl12:f2 d27 ; 3u pl22:f2 p2:f1 ph25 ;180 13C #3 3u pl12:f2 d28 ; 3u pl22:f2 p2:f1 ph26 ;180 13C #4 3u pl12:f2 d29 cpds2:f2 ;decoupling with tppm at pl12 2u go=2 ph31 ;acquire 1m do:f2; turn decoupler off id16 ;increment d16 by in16: gamma-average for clean TOSS lo to 2 times l5 ;1D ; wr #0 14 dd16 ;decrement d6 again lo to 14 times l5 ;2D: 30m wr #0 if #0 zd ;save data ip4 ;storage pulse lo to 2 times 2 ;cosine/sine States mode 1m ip4 ;storage pulse 1m ip4 ;storage pulse 10u iu0 ;increment evolution loop by 1 ;10u iu0 ;increment evolution loop by 1, comment out for wider sw in w1 ;desired sw in F1 10u id1 ;increment d1 as decoupling becomes longer, by ca. in1=10m 1m lo to 2 times td1half id0 ;increment d0 by in0 exit ;exit ph0=0 ph1=0 2 ;1H excitation ph2=0 0 1 1 2 2 3 3 ;13C CP ph3=1 ;55 Mxz to Mx ph4=2 2 2 2 2 2 2 2 ;90 to z after t1 0 0 0 0 0 0 0 0 ;remove transverse component even for short d6 ph5=3 ;55-y onto LGCP in xz-plane ph7= 1 1 2 2 3 3 0 0 ;store for z-filter after CP ph8= 3 3 0 0 1 1 2 2 ;read out after z-filter ph10=0 ;1H CP ph13=2 ;FSLG -x ph14=0 ;FSLG +x ph23= 1 1 2 2 3 3 0 0 ; 180 13C #1 TOSS ph24= 3 3 0 0 1 1 2 2 ; 180 13C #2 TOSS ph25= 1 1 2 2 3 3 0 0 ; 180 13C #3 TOSS 3 3 0 0 1 1 2 2 ph26= 2 2 1 1 0 0 3 3 ; 180 13C #4 TOSS 0 0 3 3 2 2 1 1 ph31=0 2 1 3 2 0 3 1 ;Receiver 2 0 3 1 0 2 1 3 ;storage inverted