Rapid Depolymerization of Decrystallized Cellulose to Soluble Products via Ethanolysis under Mild Conditions

Author(s)
M. Tyufekchiev # , K. Ralph , Pu Duan , Shichen Yuan , Klaus Schmidt-Rohr and M. T. Timko
Publisher
ChemSusChem
Year
2020
Volume
13
Issue
10
Pages
2634
DOI
10.1002/cssc.201903446

Abstract

Efficient cellulose depolymerization is a major bottleneck for economical production of second-generation biofuels. In this work, crystalline cellulose was subjected to sequential ball milling and ethanolysis as a mild and selective depolymerization approach. Ball milling and ethanolysis resulted in 38±1 % cellulose conversion, with 24 % ethyl-glucopyranoside as the main identified and quantified product and negligible side reaction of the ethanol solvent to form diethyl ether. In comparison, ethanolysis of the original cellulose resulted in only 3±1 % conversion. Additional soluble products from cellulose ethanolysis included carbohydrate isomers and oligomers, differing from the products obtained from hydrolysis. X-ray diffraction and nuclear magnetic resonance spectroscopy revealed increased crystallinity post-reaction, retarding further depolymerization. Hot liquid water extracted soluble oligomers from the ethanolyzed cellulose, suggesting formation of a nanoscale barrier of crystalline cellulose that traps soluble products during ethanolysis. Use of cellulose-swelling co-solvents and repeated mechanical decrystallization both proved effective at increasing cellulose conversion and soluble product yields. Repeated ball milling and ethanolysis resulted in 62±1 % cellulose conversion. Ethanolysis of decrystallized cellulose has potential for rapid (<2 h) de-polymerization at mild conditions.